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Kinetic behavior of aggregation processes with complete annihilation

Jianhong Ke* and Zhenquan Lin†

Department of Physics, Wenzhou Normal College, Wenzhou 325027, China
~Received 16 October 2001; revised manuscript received 8 January 2002; published 6 May 2002!

The kinetic behavior of an aggregation-annihilation process of ann-species (n>2) system is studied. In this
model, an irreversible aggregation reaction occurs between any two clusters of the same species and an
irreversible complete annihilation reaction occurs between any two different species. Based on the mean-field
theory, we investigate the rate equations of the process with constant reaction rates to obtain the asymptotic
solutions for the cluster-mass distributions. We find that the cluster-mass distribution of each species satisfies
a modified scaling law, which reduces to the standard scaling law in some special cases. The scaling exponents
of the system may strongly depend on the reaction rates for most cases; however, for the case with all the
aggregation rates twice the annihilation rate, these exponents depend only on the initial concentrations. All the
species annihilate each other completely except in the case in which at least one aggregation rate is less than
twice the annihilation rate.
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I. INTRODUCTION

The phenomenon of aggregation and annihilation is c
tral to a wide range of fields, such as physics, chemistry,
biology. Considerable interest has been focused on aggr
tion and annihilation processes since the 1970s@1–13#. It
was found that the cluster-mass distribution in aggrega
systems possesses scaling behavior in some particular
@11–19#. Krapivsky studied an irreversible aggregatio
annihilation process of a two-species system and found
the cluster-mass distribution obeys a scaling law in the lo
time limit @11#. Zhang and Yang generalized the two-spec
model to the process in ann-species system and analyzed t
scaling properties of the cluster-mass distribution in so
symmetrical cases@12#. Most of this research was devote
only to partial annihilation, where the larger cluster is co
served after the reaction with the number of monomers eq
to the difference between the two clusters@11,12#. Mean-
while, few studies were concerned with irreversible aggre
tion processes with complete annihilation, where the ann
lation reaction between two clusters of different spec
always results in inertness independent of their masses.
Naim and Krapivsky investigated the kinetics of a tw
species aggregation process with complete annihilation in
special case where all the reaction rates are equal to 2
found scaling descriptions of their mass distributions in
long-time limit @13#. In fact, these irreversible aggregatio
processes with complete annihilation are of great pract
significance. For example, in a two-species chemical sys
with constituent high polymersA andB, aggregation of the
same species can produce energetic open chains, while
clusters of different species can bond into an inert clo
chain. The open chains continue to participate in the reac
process, but the closed chains will withdraw from the re
tion process because of their lower energy.

In this work, we investigate the competition between t
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aggregation and annihilation processes ofn species Al

( l 51,2, . . . ,n, n>2). We assume that irreversible aggreg
tion occurs only between two clusters of the same spec

Ai
l1Aj

l →
Kl ( i , j )

Ai 1 j
l , and the irreversible complete annihilatio

reaction occurs simultaneously between two clusters of

ferent species,Ai
l1Aj

m →
Jlm( i , j )

inert, whereAi
l denotes a cluste

consisting ofi-mers of speciesAl ( l ,m51,2, . . . ,n, lÞm).
The rate of the aggregation reaction betweenAi

l andAj
l clus-

ters is equal toKl( i , j ), and that of annihilation betweenAi
l

andAj
m clusters isJlm( i , j ).

The present investigation is based on the mean-fi
theory, which assumes that the reaction proceeds with a
proportional to the reactant concentrations. Thus the me
field approximation neglects spatial fluctuation of the re
tant densities and therefore applies when the spatial dim
sion d of the system is greater than or equal to the criti
dimensiondc @11,13#. Whend,dc , fluctuations in the den-
sities of reactants may lead to dimension-dependent kin
behavior in the long-time limit; however, the mean-field pr
diction may provide a useful description of the kinetic b
havior for moderate times@11#. Numerical simulations have
confirmed the mean-field predictions above the critical
mension@13#. The investigation of aggregation process c
also be based on the particle coalescence model~PCM! in the
diffusion-controlled limit @13,20,21#. For the PCM, it is
found thatdc52 @20#. Hence, it was suggested by Ben-Nai
and Krapivsky thatdc52 for the aggregation-annihilation
model @13#. In this paper, we assume that in our system
spatial dimensiond is greater than 2. Thus we have derive
the asymptotic solutions for the cluster-mass distributio
based on the mean-field assumption. The results show
the evolution behaviors ofn types of cluster satisfy the stan
dard scaling or modified scaling laws, and their expone
are strongly dependent on the reaction rates. The initial c
centrations also play important roles in some special cas

The paper is organized as follows. In Sec. II, we descr
an irreversible aggregation-annihilation model withn
(n>2) species, and give the corresponding rate equat
©2002 The American Physical Society07-1
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with constant reaction rates on the basis of mean-field the
Then we determine the asymptotic solutions of the clus
mass distributions in the cases illustrated in Table I. A br
summary is given in Sec. III.

II. MODEL OF n-SPECIES AGGREGATION PROCESS
WITH COMPLETE ANNIHILATION

In our investigation, the theoretical approach to the agg
gation process is based on the mean-field rate equat
There aren types of cluster in the system,Al clusters,l
51,2, . . . ,n. The concentration ofAl clusters ofk-mers is
denoted asalk . Here, we consider a model with consta
reaction rates. In order to investigate thoroughly the evo
tion behavior of the irreversible aggregation-annihilati
system, we assume that the reaction rates of aggregation
annihilation have different constant values. All the annihi
tion reaction rates are equal toJ and the aggregation rates o
Al clusters are different constantsI l . We generalize the rate
equations of the aggregation-annihilation process given
Ben-Naim and Krapivsky@13# and write out the correspond
ing rate equations for this system as follows:

dalk

dt
5I lS 1

2 (
i 1 j 5k

ali al j 2alk(
j 51

`

al j D
2Jalk (

1<m<n,mÞ l
(
j 51

`

am j , l 51,2, . . . ,n. ~1!

As we aim to find the analytical solutions of the evolutio
behavior of the clusters and investigate their long-time s
ing properties, we assume that there exist only mono
clusters att50 and the cluster concentration ofAl species
equalsAl0. Then the monodisperse initial conditions are

alk~0!5Al0dk1 , l 51,2, . . . ,n. ~2!

In the above case, the set of rate equations can be so
with the help of the ansatz in Ref.@11#. We assumealk has
the form

alk~ t !5Al~ t !@al~ t !#k21, l 51,2, . . . ,n. ~3!

Substituting Eq.~3! into Eqs.~1!, we can transform it into
the following differential equations:

TABLE I. Organization of Sec. II.

Case Title of subsection

A All aggregation rates greater than 2J ~twice the
annihilation rate!

B All aggregation rates equal to 2J
C All aggregation rates less than 2J
D Some aggregation rates less than 2J with others equal to

or greater than 2J
E Some aggregation rates equal to 2J with others greater

than 2J
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dal

dt
5

1

2
I lAl ,

dAl

dt
52

I lAl
2

12al
2JAl (

1<m<n,mÞ l

Am

12am
, l 51,2, . . . ,n.

~4!

Correspondingly, the initial conditions of Eqs.~4! become

al50, Al5Al0 , l 51,2, . . . ,n, at t50. ~5!

Introducing new variablesa l(t),

a l5~12al !
21, l 51,2, . . . ,n, ~6!

we recast the differential equations~4! as the following equa-
tions:

d2a l

dt2
52

da l

dt (
1<m<n,mÞ l

2J

I mam

dam

dt
, l 51,2, . . . ,n,

~7!

and the initial conditions of Eqs.~7! are

a l51,
da l

dt
5

1

2
I lAl0 , l 51,2, . . . ,n, at t50. ~8!

Equations~7! can be integrated as follows:

da l

dt
5

1

2
I lAl0 )

1<m<n,mÞ l
am

22J/I m , l 51,2, . . . ,n. ~9!

Then we can derive the following equations from Eqs.~9!

I mAm0a l
22J/I l

da l

dt
5I lAl0am

22J/I m
dam

dt
,

l 51,2, . . . ,n, m51,2, . . . ,n. ~10!

In order to thoroughly investigate the kinetic behavior
the system, we discuss the solutions of Eqs.~9! and ~10! in
several different cases.

A. All aggregation rates greater than 2J

In this case, one can derive the following equations fro
Eqs.~10!:

am
122J/I m21

Am0~ I m22J!
5

a l
122J/I l21

Al0~ I l22J!
,

l 51,2, . . . ,n, m51,2, . . . . ~11!

Substituting Eqs.~11! into Eqs.~9!, we obtain

da l

dt
5

I lAl0

2 )
1<m<n,mÞ l

F12
Am0~ I m22J!

Al0~ I l22J!

1
Am0~ I m22J!

Al0~ I l22J!
a l

122J/I l G2J/(2J2I m)

,
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l 51,2, . . . ,n. ~12!

The system is assumed to reach its steady state att→` and
its steady conditions are then given as follows:

dal

dt
5

1

a l
2

da l

dt
50,

dAl

dt
5

2

I la l
2

d2a l

dt2
2

4

I la l
3 S da l

dt D 2

50, l 51,2, . . . ,n.

~13!

Thus we can conclude that eithera l→` or da l /dt→0 at t
→`. Further, from Eqs.~9! and~11! we know thata l→` at
t→` for this case. Hence,a l@1 at t@1. In the long-time
limit, Eqs. ~12! can be rewritten as the following asymptot
equations:

da l

dt
.

I lAl0

2 )
1<m<n,mÞ l

FAm0~ I m22J!

Al0~ I l22J! G2J/(2J2I m)

3a l
(I l22J)/I l (1<m<n,mÞ l 2J/(2J2I m)

,

l 51,2, . . . ,n. ~14!

The asymptotic solutions ofa l in the long-time limit are
directly given as

a l.C1l t
R1l, l 51,2, . . . ,n, ~15!

where

R1l5I lF I l22J12J (
m51

n

~ I l22J!/~ I m22J!G21

and

C1l5H I lAl0

2R1l
)
m51

n FAm0~ I m22J!

Al0~ I l22J! G2J/(2J2I m)J R1l

.

We then obtain the following asymptotic solutions for t
cluster-mass distributions:

alk~ t !.C1l8 t212R1l@12C1l
21t2R1l#k21, l 51,2, . . . ,n,

~16!

whereC1l8 52R1l /I lC1l . Further, Eqs.~16! can be rewritten
as

alk~ t !.C1l8 t212R1l exp~2xl !, l 51,2, . . . ,n, ~17!

which are valid in the regions k@1, t@1, xl
5(k/C1l)t

2R1l5finite.
Krapivsky used a functionS(t) to denote the characteris

tic cluster mass in the long-time limit of such an aggregat
system and wrote the concentrationck(t) of k-mer aggre-
gates in scaling form as@11#

ck~ t !.t2wF@k/S~ t !#, S~ t !}tz. ~18!
05110
n

The total numberN(t) and the total massM (t) of the clus-
ters of one species in the long-time limit can then be
pressed in power-law forms as@11#

N~ t !5 (
k51

`

ck~ t !}t2l, M ~ t !5 (
k51

`

kck~ t !}t2m.

~19!

The four exponents (w,z,l,m) are universally used to de
scribe the scaling nature of aggregation-annihilation p
cesses in the long-time limit. From Eqs.~18! and ~19!, one
can find the following exponent relations:

l5w2z, m5w22z. ~20!

In this case, the asymptotic solutions ofalk(t) show that
the cluster-mass distribution of each species satisfies
standard scaling law~18! in the long-time limit. From Eqs.
~17!, we obtain the four exponents as follows:

w5

2I l22J12J (
m51

n

~ I l22J!/~ I m22J!

I l22J12J (
m51

n

~ I l22J!/~ I m22J!

,

z5
I l

I l22J12J (
m51

n

~ I l22J!/~ I m22J!

, l51, ~21!

m5

2J (
m51

n

~ I l22J!/~ I m22J!22J

I l22J12J (
m51

n

~ I l22J!/~ I m22J!

for Al clusters, l 51,2, . . . ,n.

It is shown that the exponentsw, z, andm depend on the
values of the reaction ratesI l andJ. The total numbers and
the total mass of all the species are found to decrease
time becausel,m.0, and no species remains att→`, in-
dependent of the initial dataAl0 ( l 51,2, . . . ,n).

B. All aggregation rates equal to 2J

In this case, we determine the following integrals of Eq
~10!:

am
Al05a l

Am0 , l 51,2, . . . ,n, m51,2, . . . ,n. ~22!

Substituting Eqs.~22! into Eqs.~9!, one can obtain

da l

dt
5JAl0a l

R2l , l 51,2, . . . ,n, ~23!

whereR2l512(m51
n Am0 /Al0. The exact solutions ofa l can

easily be derived from Eqs.~23!:
7-3
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a l5S J (
m51

n

Am0t11D R3l

, l 51,2, . . . ,n, ~24!

whereR3l5Al0 /(m51
n Am0. Then we obtain the scaling solu

tions of alk(t) in the long-time limit as follows:

alk~ t !.Al0S J (
m51

n

Am0t D 212R3l

exp~2xl !,

l 51,2, . . . ,n, ~25!

and the different scaling variables forAl clusters are

xl5kS J (
m51

n

Am0t D 2R3l

. ~26!

According to the standard scaling form~18!, we determine
the scaling exponents

w5

Al01 (
m51

n

Am0

(
m51

n

Am0

, z5
Al0

(
m51

n

Am0

,

l51, m5

(
m51

n

Am02Al0

(
m51

n

Am0

for Al clusters, l 51,2, . . . ,n. ~27!

The results show that all the species obey the standard
ing law in this case. The exponentsw, z, andm are related
to the initial dataAl0 and are independent of the reactio
ratesI l and J. It is obvious that the heavy species with th
larger initial concentration has the smaller value ofm, and
dominates over the light one in the long-time limit. The r
sults also indicate that both the total number and the t
mass of each species decrease with time and all the sp
annihilate each other completely in the end.

C. All aggregation rates less than 2J

We can also obtain Eqs.~11! and ~12! for this case. The
solutions ofa l are dependent on the values ofAl0(2J2I l).
Without any loss of generality, one can assume thatA10(2J
2I 1)>A20(2J2I 2)>•••>An0(2J2I n).

When A10(2J2I 1).Al 80(2J2I l 8), l 852,3, . . . ,n, it
can be found from Eq.~12! that a1→` at t→`. So,
a1

122J/I 1!1 at t@1. Thus we obtain the asymptotic diffe
ential equation fora1 in the long-time limit from Eqs.~12!:

da1

dt
.C21, ~28!
05110
al-

-
al
ies

where C215(I 1A10/2)) l 852
n

@12Al 80(2J2I l 8)/A10(2J
2I 1)#2J/(2J2I l 8). The asymptotic solution ofa1 can be ob-
tained as

a1.C21t. ~29!

Substituting Eq.~29! into Eqs.~11!, we derive the solutions
for a l 8 as follows:

a l 8.C2l 82C3l 8t
122J/I 1, l 852,3, . . . ,n, ~30!

whereC2l 85@12Al 80(2J2I l 8)/A10(2J2I 1)# I l 8 /(I l 822J) and

C3l 85I l 8Al 80C2l 8C21
122J/I 1 / @A10(2J 2 I 1) 2Al 80 (2J2I l 8) #.

We then obtain the standard scaling solution for the clus
mass distribution ofA1 species, which has the maximum
value ofAl0(2J2I l)

a1k~ t !.
2

I 1C21
t22 exp~2x1!, x15k~C21t !

21, ~31!

and the exponents for theA1 species are

w52, z51, l51, m50. ~32!

One can determine the asymptotic behaviors for the clus
mass distributions ofAl 8 species as

al 8k~ t !.
2~2J2I 1!C3l 8

I 1I l 8C2l 8
2 S C2l 821

C2l 8
D k

t22J/I 1

3exp~2xl 8!, l 852,3, . . . ,n, ~33!

where xl 85@C3l 8 /C2l 8(C2l 821)#kt2(2J2I 1)/I 1. Equations
~33! are valid in the regionkt2(2J2I 1)/I 15finite. The result
implies that the standard scaling description~18! of the
cluster-mass distribution breaks down forAl 8 species with
smaller values ofAl 80(2J2I l8).

One can modify the standard scaling description~18! as
follows @11#:

ck~ t !.bkt2wF@k/S~ t !#, S~ t !}tz, ~34!

whereb is a constant and 0,b,1. In this case, the scaling
exponent relations become

l5w, m5w. ~35!

Thus the exponents for theAl 8 species (l 852,3, . . . ,n) are
given as

w5l5m52J/I 1 , z5~2J2I 1!/I 1 . ~36!

This shows that all theAl 8 species (l 852,3, . . . ,n) have the
same scaling exponents, which depend on the aggrega
rate ofA1 species and the annihilation rateJ. In this case,Al 8

clusters havem52J/I 1.1 in contrast tom50 for A1 clus-
ters, which implies that onlyA1 species remain at the end.

Now let us turn to the general case in which there aren8
kinds of species (1,n8<n) with the same largest values o
7-4
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Al0(2J2I l). When the system consists of only two speci
we haven85n52. Thus we can obtain the following equa
tions from Eqs.~11!:

a1
122J/I 15a2

122J/I 2 . ~37!

In this case, we find thata1 ,a2→` at t→`. Hence,
a1 ,a2@1 in the long-time limit. Substituting Eq.~37! into
Eqs. ~12!, we obtain the differential equation fora1(t) as
follows:

da1

dt
5

1

2
I 1A10a1

2J(I 122J)/I 1(2J2I 2) . ~38!

One can determine the exact solution ofa1 from Eq. ~38!:

a15F ~4J22I 1I 2!A10

2~2J2I 2!
t11G (2I 1J2I 1I 2)/(4J22I 1I 2)

, ~39!

and the solution fora2 can then be obtained as

a25F ~4J22I 1I 2!A20

2~2J2I 1!
t11G (2I 2J2I 1I 2)/(4J22I 1I 2)

. ~40!

Thus we obtain the standard scaling descriptions for bothA1

andA2 clusters in the long-time limit as

a1k~ t !.
2~2J2I 2!

B1~4J22I 1I 2!
t2(4J212I 1J22I 1I 2)/(4J22I 1I 2)

3exp~2x1!,

x15
k

B1
t2(2I 1J2I 1I 2)/(4J22I 1I 2),

~41!

a2k~ t !.
2~2J2I 1!

B2~4J22I 1I 2!
t2(4J212I 2J22I 1I 2)/(4J22I 1I 2)

3exp~2x2!,

x25
k

B2
t2(2I 2J2I 1I 2)/(4J22I 1I 2),

where B15@(4J22I 1I 2)A10/2(2J2I 2)# (2I 1J2I 1I 2)/(4J22I 1I 2)

and B25@(4J22I 1I 2)A20/2(2J2I 1)# (2I 2J2I 1I 2)/(4J22I 1I 2).
The scaling exponents are

w5
4J212I 1J22I 1I 2

4J22I 1I 2

, z5
2I 1J2I 1I 2

4J22I 1I 2

,

l51, m5
4J222I 1J

4J22I 1I 2

for A1 clusters,

~42!

w5
4J212I 2J22I 1I 2

4J22I 1I 2

, z5
2I 2J2I 1I 2

4J22I 1I 2

,

05110
,
l51, m5

4J222I 2J

4J22I 1I 2

for A2 clusters.

The results show that the exponentsw, z, andm are depen-
dent on the values of the reaction ratesI 1 , I 2, andJ. In this
case, both the total number and total mass of either spe
decrease with time. NeitherA1 species norA2 species re-
mains att→`, independent of the initial dataA10 andA20.

In the n-species system (n.2), we assume thatAl0(2J
2I l)5A10(2J2I 1) for 1, l<n8 and Al 80(2J2I l 8)
,A10(2J2I 1) for n8, l 8<n. Thus we obtain the following
equations from Eqs.~11!:

a l
122J/I l5a1

122J/I 1 , l 51,2, . . . ,n8,

a1
122J/I 121

A10~ I 122J!
5

a
l 8

122J/I l 821

Al 80~ I l 822J!
, l 85n811,n812, . . . ,n.

~43!

In this case, we find thata l@1 (l 51,2, . . . ,n8) in the long-
time limit. Substituting Eqs.~43! into Eqs.~12!, we obtain
the asymptotic differential equation fora1(t):

da1

dt
.

I 1A10

2 )
l 85n811

n F12
Al 80~2J2I l 8!

A10~2J2I 1! G2J/(2J2I l 8)

a1
b ,

~44!

where b5@(I 122J)/I 1#(m52
n8 @2J/(2J2I m)#. One can de-

termine the asymptotic solution ofa1 from Eq. ~44! as

a1.C41t
R41, ~45!

where

R415I 1 Y F I 122J12J(
l 51

n8

~2J2I 1!/~2J2I l !G
and

C415 )
l 85n811

n F12
Al 80~2J2I l 8!

A10~2J2I 1! G2JR41 /(2J2I l 8)S I 1A10

2R41
D R41

.

The solutions ofa l anda l 8 can then be obtained as

a l.C4l t
R4l, l 51,2, . . . ,n8,

a l 8.C4l 82C5l 8t
2R5l 8, l 85n811,n812, . . . ,n,

~46!

where

R4l5I lS I l22J12J (
m51

n8 2J2I l

2J2I m
D 21

,

C4l5C41
I l (2J2I 1)/I 1(2J2I l ) ,
7-5
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C4l 85F12
Al 80~2J2I l 8!

A10~2J2I 1! G I l 8 /(I l 822J)

,

C5l 85
I l 8Al 80C4l 8C41

122J/I 1

A10~2J2I 1!2Al 80~2J2I l 8!
,

R5l 85S (
m51

n8 2J

2J2I m
21D 21

.

Thus we determine the standard scaling description forAl

species in the long-time limit:

alk~ t !.
2R4l

I lC4l
t212R4l exp~2xl !,

xl5
k

C4l
t2R4l, l 51,2, . . . ,n8, ~47!

and the scaling exponents for theAl species are

w5

2I l22J12J (
m51

n8

~2J2I l !/~2J2I m!

I l22J12J (
m51

n8

~2J2I l !/~2J2I m!

,

z5
I l

I l22J12J (
m51

n8

~2J2I l !/~2J2I m!

, l51, ~48!

m5

2J (
m51

n8

~2J2I l !/~2J2I m!22J

I l22J12J (
m51

n8

~2J2I l !/~2J2I m!

,

which are similar to Eq.~21!. Meanwhile, the standard sca
ing description~17! breaks down forAl 8 species and we
obtain the modified scaling description for them:

al 8k~ t !.
2C5l 8R5l 8

I l 8C4l 8
2 S C4l 821

C4l 8
D k

t212R5l 8 exp~2xl 8!,

l 85n811,n812, . . . ,n ~49!

with the different scaling variablesxl 85@C5l 8 /C4l 8(C4l 8
21)#kt2R5l 8. The same exponents for all theAl 8 species are

w5l5m5

(
m51

n8

2J/~2J2I m!

(
m51

n8

2J/~2J2I m!21

,

05110
z5
1

(
m51

n8

2J/~2J2I m!21

. ~50!

The values ofm for Al species (l 51,2, . . . ,n8), which have
the largest value ofAl(2J2I l), are less than those ofAl 8

species (l 85n811,n812, . . . ,n). This implies thatAl spe-
cies dominate overAl 8 species att@1. The results show tha
all the species annihilate each other completely and no
cies remains at last, independent of the initial data.

It can be concluded from the above analyses that the m
distribution of the species with the largest value ofAl0(2J
2I l) satisfies the standard scaling law, while the stand
scaling description breaks down for the species with sma
values ofAl0(2J2I l). If there is only a certain species tha
has the largest value ofAl0(2J2I l), it will remain in the
end; meanwhile, all the other species will be annihilat
completely. If there are more than two species having
same largest value ofAl0(2J2I l), all the species will be
annihilated completely in the end.

D. Some aggregation rates less than 2J with others equal to
or greater than 2J

Now we investigate the case of some aggregation ra
being less than 2J while the others are equal to or great
than 2J. Without any loss of generality, we assumeI m,2J
for m51,2, . . . ,n0 (1<n0,n) and I m8>2J for m85n0
11,n012, . . . ,n. This case is similar to that in Sec. II C
The characteristics of the cluster-mass distributions are c
cerned with the values ofAl0(2J2I l). For simplicity, we
assume that A10(2J2I 1)>Al 10(2J2I l 1

) for l 1

52,3, . . . ,n0. From Eqs.~10!, one can obtain the following
equations for this case:

a1
122J/I 121

A10~ I 122J!
5

a
l 8

122J/I l 821

Al 80~ I l 822J!

for I l 8Þ2J, l 852,3, . . . ,n,

a l 85expF I l 8Al 80

A10~ I 122J!
~a1

122J/I 121!G for I l 852J.

~51!

Whenn051 or A10(2J2I 1).Al 80(2J2I l 8), we find that
a1→` and a l→bl 8 (bl 8 are constants andbl 8.1, l 8
52,3, . . . ,n) at t→`. Thus one can obtain the asymptot
differential equation fora l in the long-time limit,

da1

dt
.

I 1A10

2 )
l 852

n

C
6l 8

22J/I l 8 , ~52!

where C6l 85@12Al 80(2J2I l 8)/A10(2J2I 1)# I l 8 /(I l 822J) for
I l 8Þ2J andC6l 85exp@Al80Il8 /A10(2J2I 1)# for I l 852J. The
solution fora1 can then be given as

a1.C61t, ~53!
7-6
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whereC615
1
2 I 1A10) l 852

n C
6l 8

22J/I l 8 . Substituting Eq.~53! into
Eqs.~51!, we obtain the asymptotic solutions ofa l 8(t) as

a l 8.C6l 82C7l 8t
122J/I 1, l 852,3, . . . ,n, ~54!

where C7l 85I l 8Al 80C6l 8C61
122J/I 1/@A10(2J2I 1)2Al 80(2J

2I l 8)#. Equations~53! and~54! are similar to Eqs.~29! and
~30!. So this case has the same results as in Sec. II C. In
long-time limit, the cluster-mass distribution ofA1 species,
which has the largest value ofAl0(2J2I l), has the same
standard scaling description as Eq.~31!, whereC21 is substi-
tuted byC61. Meanwhile, we also determine similar mod
fied scaling descriptions as~33! for Al 8 species (l 8
52,3, . . . ,n), whereC2l 8 and C3l 8 are substituted byC6l 8
andC7l 8 , respectively. Hence,A1 andAl 8 species have the
same scaling exponents~32! and ~36!, respectively.

In the general case ofn0.1, we assume thatAl0(2J
2I l)5A10(2J2I ) for l 52,3, . . . ,n9 (1,n9<n0) and
Al 10(2J2I l 1

),A10(2J2I 1) for l 15n911,n912, . . . ,n0. In

this case, we havea l→` ( l 51,2, . . . ,n9) and a l 8→cl 8
(cl 8 are constants andcl 8.1, l 85n911,n912, . . . ,n) at t
→`. Thus in the long-time limit, we obtain the asymptot
differential equations fora l from Eqs.~9!,

da l

dt
.

I lAl0

2 )
l 85n911

n

C
8l 8

22J/I l 8a l
R6l , l 51,2, . . . ,n9,

~55!

where

R6l5
2J

I l
S 12 (

m51

n9 2J2I l

2J2I m
D ,

C8l 85@12Al 80~2J2I l 8!/A10~2J2I 1!# I l 8 /~ I l 822J!

for I l 8Þ2J,

C8l 85exp@Al 80I l 8 /A10~2J2I 1!# for I l 852J.

The asymptotic solutions fora l anda l 8 can be determined a
follows:

a l.C8l t
R7l, l 51,2, . . . ,n9,

a l 8.C8l 82C9l 8t
2R8l 8, l 85n911,n912, . . . ,n,

~56!

where

R7l5I lS I l22J12J (
m51

n9 2J2I l

2J2I m
D 21

,

C8l5S I lAl0

2R7l
)

l 85n911

n

C
8l 8

22J/I l 8D R7l

,

R8l 85S (
m51

n9 2J

2J2I m
21D 21

,

05110
he

C9l 85
C8l 8Al 80I l 8

A10~2J2I 1!2Al 80~2J2I l 8!
C81

122J/I 1 .

Equations~56! are similar to Eqs.~46!. Substituting for the
constants C4l , C5l , C5l 8 , and n8 in Sec. II C with
C8l , C8l 8 , C9l 8 , and n9, respectively, we can obtain th
modified equations~47!–~50! of the cluster-mass distribu
tions and scaling exponents for this case. The results s
that the kinetic behavior of this system is similar to that
Sec. II C. Moreover, if we haven95n8, the results of this
case are just identical to those in Sec. II C.

E. Some aggregation rates equal to 2J with the others greater
than 2J

For simplicity, we assume I m52J for m
51,2, . . . ,n1 (1<n1,n) and I m8.2J for m85n111,n1
12, . . . ,n. Then we can derive the following equations fro
Eqs.~10!:

a1
Am05am

A10, m52,3, . . . ,n1 ,

ln a1

I 1A10
5

a
m8

122J/I m821

Am80~ I m822J!
, m85n111,n112, . . . ,n.

~57!

Substituting Eqs.~57! into Eqs.~9!, we obtain the differential
equation ofa1 as follows:

a
1

(
m152

n1 Am0 /A10 )
m85n111

n F ln a1

1
A10I 1

Am80~ I m8022J!
G 2J/(I m822J)

da1

dt

5
1

2
I 1A10 )

m85n111

n FAm80~ I m8022J!

A10I 1
G2J/(2J2I m8)

.

~58!

It can be decisively concluded from Eqs.~9! and ~57! that
a l→` ( l 52,3, . . . ,n) at t→`. We integrate Eq.~58! and
then derive the solution ofa1 in the implicit form att@1:

(
i 51

` F S 2 (
m51

n1 Am0

A10
D 2 i

)
j 50

i 21 S (
m85n111

n
2J

I m822J
2 j D i

3a
1

(
m151

n1 Am0 /A10
~ ln a1!2 i 1(

m85n111
n

2J / (I m822J)G
1a

1

(
m151

n1 Am0 /A10
~ ln a1!(

m85n111
n

2J / (I m822J)

.
1

2
I 1 (

m51

n1

Am0 )
m85n111

n FAm80~ I m822J!

A10I 1
G2J / (2J2I m8)

t.

~59!
7-7
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If there exists integral N satisfying the equation
(m5n111

n 2J/(I m22J)2N50, the infinite terms in Eq.~59!

will be simplified to finite terms ofi 51;N. In the long-time
limit, the value of the summation in Eq.~59! is far smaller

than that ofa
1

(
m151

n1 Am0 /A10(ln a1)
(

m85n111
n

2J/(Im822J) and is neg-

ligible. Then Eq.~59! reduces to

a
1

(
m151

n1 Am0 /A10
~ ln a1!(

m85n111
n

2J/ (I m822J)

.
1

2
I 1 (

m51

n1

Am0 )
m85n111

n FAm80~ I m822J!

A10I 1
G2J/(2J2I m8)

t.

~60!

The asymptotic solution fora1 in the long-time limit can be
given as

a1.C101t
R91~ ln t !R918 , ~61!

where C1015$ 1
2 I 1(m151

n1 Am0)m85n111
n

@Am80(I m80

22J)/A10I 1#2J/(2J2I m8)%R91, R915((m151
n1 Am0 /A10)

21, and

R918 5(m85n111
n 2JR91/(2J2I m8). Substituting Eq.~61! into

Eqs.~57!, one can derive the asymptotic solutions foram and
am8 as follows:

am.C10mtR9m~ ln t !R9m8 , m51,2, . . . ,n1 ,

am8.C10m8~ ln t ! I m8 /(I m822J), m85n111,n112, . . . ,n,
~62!

where R9m5((m151
n1 Am10 /Am0)21, R9m8 5(m85n111

n

32JR9m /(2J2I m8), C10m5C101
Am0 /A10, and C10m8

5@$Am80(I m822J)/2JAm0%R9m# I m8 /(I m822J). The asymptotic
solutions for the long-time mass distributions ofAm andAm8

clusters are then obtained as follows:

amk~ t !.
2R9m

I mC10m
t212R9m~ ln t !2R9m8 exp~2xm!,

m51,2, . . . ,n1 , ~63!

am8k~ t !.
2C10m8

21

I m822J
t21~ ln t !2(2I m822J)/(I m822J)

3exp~2xm8!, m85n111,n112, . . . ,n,

which are valid in the scaling regionsk@1,

t@1, xm 5 (k/C10m)t2R9m(ln t)2R9m8 5 finite, and xm8
5(k/C10m8)(ln t)2Im8 /(Im822J)5finite, respectively.

The solutions show that the standard scaling descrip
~18! of the cluster-mass distribution breaks down for all t
Al clusters (l 51,2, . . . ,n) in this case and they come into
rather peculiar scaling regime. We may modify the abo
scaling description~18! further into
05110
n

e

ck~ t !.C0hk@g~ t !#2w1@ f ~ t !#2w2F@k/S~ t !#,

S~ t !}@g~ t !#z1@ f ~ t !#z2, g8~ t !, f 8~ t !.0, ~64!

where C0 and h denote two constants, and 0,h<1. g(t)
and f (t) are unusual functions of time, such aset, ln t, 2t,
and so on.

The total number and the total mass of the clusters
then be rewritten as

N~ t !5 (
k51

`

ck~ t !}@g~ t !#2l1@ f ~ t !#2l2,

M ~ t !5 (
k51

`

kck~ t !}@g~ t !#2m1@ f ~ t !#2m2. ~65!

The exponent relations are derived from Eqs.~64! and ~65!
to be

l15w12z1 , m15w122z1 , l25w22z2 ,

m25w222z2 for h51, ~66!

l15w1 , m15w1 , l25w2 , m25w2 for 0,h,1.

When f (t)5g(t)[t, one can find the relations betwee
(w,z,l,m) and (w1 ,w2 ,z1 ,z2 ,l1 ,l2 ,m1,m2) as

w5w11w2 , z5z11z2 ,

l5l11l2 , m5m11m2 . ~67!

In this case, we find the scaling exponents by letti
g(t)[t and f (t)[ ln t for Am clusters (m51,2, . . . ,n1)

w15

Am01 (
m151

n1

Am10

(
m151

n1

Am10

,

w25z252m25

(
m85n111

n

2J/~2J2I m8!

(
m151

n1

Am10 /Am0

,

~68!

z15
Am0

(
m151

n1

Am10

, l151, l250,

m15

(
m151

n1

Am102Am0

(
m151

n1

Am10

,

7-8
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andAm8 clusters (m85n111,n112, . . . ,n)

w151, w25
2I m822J

I m822J
, z150, z25

I m8

I m822J
,

l151, l251, ~69!

m151, m25
2J

2J2I m8

for Am8 clusters.

For the two-species system, it is obvious thatn151.
Equations~68! and ~69! are then simplified as

w152, w25
2J

2J2I 2
, z151, z25

2J

2J2I 2
,

l151, l250, ~70!

m150, m25
2J

I 222J
for A1 clusters,

w151, w25
2I 222J

I 222J
, z150, z25

I 2

I 222J
,

l151, l251, ~71!

m151, m25
2J

2J2I 2
for A2 clusters.

It is shown that the exponents are dependent only on
larger aggregation rateI 2 (I 2.I 152J) and the annihilation
rateJ, and they are independent of the initial data. Comp
son between the total massesM1(t)}(ln t)22J/(I222J) of A1

clusters andM2(t)}t21(ln t)2J/(I222J) of A2 clusters shows
that A1 clusters dominate overA2 clusters in the long-time
limit. The results also show that both the total number a
total mass of either species decrease with time. In this c
the two species annihilate each other completely and no c
ters remain at the end.

When the system consists ofn kinds of species (n.2)
and there is only one speciesA1 whose aggregation rate i
equal to 2J, Eqs.~68! and ~69! can be rewritten as

w152, w25 (
m852

n
2J

2J2I m8

, z151,

z25 (
m852

n
2J

2J2I m8

, l151, l250, ~72!

m150, m25 (
m852

n
2J

I m822J
for A1 clusters,

w151, w25
2I m822J

I m822J
, z150,
05110
e

i-

d
e,
s-

z25
I m8

I m822J
, l151, l251, ~73!

m151, m25
2J

2J2I m8

for Am8 clusters, m852,3, . . . ,n.

The results show that the exponents also depend on the la
aggregation ratesI m8 (I m8.I 152J, m852,3, . . . ,n) and
the annihilation rateJ, and they are independent of the a
gregation rate ofA1 species and all the initial concentration
In this case, the largeA1 clusters dominate over the corre
sponding clusters of the other species in the long-time lim
For Am8 species (m852,3, . . . ,n), the species with lower
aggregation rate has the minimum value ofm2 and thus
dominates over the others in the long-time limit, which
also independent of the initial data. The results imply that
clusters remain in the end.

In the general cases ofn.2 andn1.1, Eq.~70! indicates
that the exponents ofAm clusters (m51,2, . . . ,n1) depend
both on the reaction rates ofAm8 species (m85n111,n1
12, . . . ,n) and on the initial concentrations ofAm species.
But the exponents ofAm8 clusters depend only on their ow
reaction rates. It is obvious that in this casem1,1 for Am

species (m51,2, . . . ,n1) while m1521 for all theAm8 spe-
cies (m85n111,n112, . . . ,n). Making a comparison be
tween the total massesMm(t)}t2m1(ln t)2m2 of Am species

and Mm8(t)}t21(ln t)2m28 of Am8 species, one finds thatAm

clusters dominate overAm8 clusters in the long-time limit,
independent of the initial data. It is not surprising because
have assumed thatAm species have lower aggregation rat
(I m52J) thanAm8 species (I m8.2J). It is also shown that
for all the Am species (m51,2, . . . ,n1), the species with
largest initial concentration has the minimum value ofm1
and thus dominates over the others. Moreover, all the ki
of species annihilate each other completely in the end.

III. SUMMARY

We studied an irreversible aggregation-annihilation s
tem consisting ofn kinds of distinct species on the basis
the mean-field theory. Considering the constant-reaction-
model, we analyzed the kinetic behavior of the aggregat
process with complete annihilation. In the first case of all
aggregation rates being greater than 2J, we found that the
cluster-mass distribution of each species obeys the stan
scaling law in the long-time limit, and its exponents are d
pendent on the aggregation rates and the annihilation r
but independent of all the initial concentrationsAl0 ( l
51,2, . . . ,n). In the second case of all the aggregation ra
being equal to 2J, the system also has the standard scal
description for the mass distribution of each species, but
scaling exponents depend only on the initial concentratio
In the third case of all the aggregation rates being less t
2J and in the fourth case of some aggregation rates be
7-9
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less than 2J, we have found that only a certain species wh
has the largest value ofAl0(2J2I l) satisfies the standar
scaling law, and the exponents are dependent only on
aggregation rates and the annihilation rate. Meanwhile,
standard scaling description breaks down for the other s
cies with the smaller values ofAl0(2J2I l), and they have
other modified scaling behaviors. In the fifth case of so
aggregation rates being equal to 2J and others greater tha
2J, we find that no species has standard scaling behavior
they satisfy modified scaling laws.

In any case, the evolution behavior of the total numb
and total mass of the clusters of all the species strongly
pends on the reaction rates and the initial concentratio
When all the aggregation rates are equal to or greater
2J, both the total number and total mass of each spe
decrease with time and no species remains att→`. In the
case that there are more than one species whose aggreg
rates are less than 2J while the others are equal to or great
05110
he
e
e-

e

ut

r
e-
s.
an
es

tion

than 2J, whether a certain species still remains in the end
all the species annihilate completely is strongly dependen
both the reaction rates and the initial concentrations. If th
is only one species which has the largest value ofAl0(2J
2I l) among those species whose aggregation rates are
than 2J, it dominates over the others in the long-time lim
and finally remains alone. In short, the aggregation proc
with complete annihilation always satisfies a standard sca
or modified scaling law and its exponents strongly depend
the reaction rates. Of course, the initial concentrations a
play an important role in the evolution behavior of the sy
tem.
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